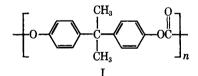
# Condensation Polymers Derived from N,N'-Dialkyland N,N'-Diarylarylenediamines


MARKUS MATZNER, ROBERT BARCLAY, JR., and C. NEALE MERRIAM, Plastics Division, Research and Development Department, Union Carbide Corporation, Bound Brook, New Jersey

#### **Synopsis**

A series of polyurethanes and poly(carbonate-urethanes) was prepared from diphenols and N,N'-dialkyl- and N,N'-diarylarylenediamines. These polymers are rigid, noncrystallizable, high-softening thermoplastics. In several cases, their properties were at least equivalent to those of the known bisphenol polycarbonates. As expected, the poly(carbonate-urethanes) exhibit properties intermediate between those of the respective homopolymers. A structure-properties correlation is presented.

#### **INTRODUCTION**

Polycarbonates derived from various bisphenols have been the object of intensive research.<sup>1,2</sup> These polymers have exhibited several very attractive properties, such as toughness, high softening temperature, thermal stability, etc. The representative of this class which has achieved considerable commercial importance is the polycarbonate of 2,2-bis(*p*-hydroxy-phenyl)propane (bisphenol-A) (I). This polycarbonate



is marketed by the General Electric Co. under the name Lexan.

Other polymers derived from bisphenols were also studied intensively. Conix,<sup>3</sup> for example, prepared several polyesters from bisphenols and aromatic dicarboxylic acids. These polymers are tough resins with high softening temperatures.

Nitrogen-containing polymers formally analogous to the bisphenol polyesters and polycarbonates have been less thoroughly investigated. Polyamides derived from aromatic dibasic acids and primary aromatic diamines have been studied by both American<sup>4,5</sup> and Russian<sup>6</sup> workers. Since their properties are doubtless strongly influenced by hydrogen bonding, however, these polymers are not so closely related to their oxygen analogs as are the corresponding polymers derived from secondary aromatic diamines. Some of the latter have been reported<sup>5,6</sup> but have not been closely characterized. Almost nothing has been published regarding the polyurethanes (II), although some related polyurethanes<sup>7</sup> and

$$\begin{bmatrix} 0 & R_1 & R_1 & 0 \\ \parallel & \parallel & \parallel \\ 0 - Ar - 0 - C - N - R_2 - N - C \end{bmatrix}_{n}$$

 $R_1 = alkyl \text{ or aryl}$ 

 $R_2 = arylene$ 

poly(carbonate-urethanes)<sup>8</sup> were recently reported. The present paper describes the preparation and properties of two series of polymers: a group of polyurethanes of the general structure II, and a group of poly(carbonateurethanes), i.e., copolymers of structures I and II.

## **EXPERIMENTAL**

### Materials

4,4'-Methylenebis(*N*-methylaniline) was prepared by the method of Fedotova et al.,<sup>9</sup> m.p. 54.5–56.2°C.; 4,4'-methylenebis(*N*-ethylaniline) was prepared similarly, b.p. 195°C./0.25 mm.,  $n_D^{25}$  1.6063. *N*,*N*'-Diphenylhexamethylenediamine was prepared by the method of Billman and Caswell,<sup>10</sup> m.p. 75–76°C. *N*,*N*'-Diphenyl-*p*-phenylenediamine was obtained by recrystallizaton of commercially available material (benzenepetroleum ether), m.p. 146–147°C. 4,4''-Methylenebis(diphenylamine), m.p. 121–122°C. (reported<sup>11</sup> m.p. 122–123°C.) and 4,4''-isopropylidenebis (diphenylamine), m.p. 98.5–99.5°C. (reported<sup>12</sup> m.p. 99–100°C.) were prepared from the corresponding diphenols via the Chapman rearrangement.<sup>13</sup>

The dichloroformates were prepared from the diphenols and phosgene. Melting points of the products were as follows: from bisphenol-A, 94– 95°C. (reported<sup>14</sup> m.p. 96–98°C.); from tetrachlorobisphenol-A, 164–166°C. (reported<sup>14</sup> m.p. 163–165°C.); from 4,4'-sulfonyldiphenol, 139–141°C. (reported<sup>15</sup> m.p. 143–144°C.).

The isophthaloyl chloride used was recrystallized from petroleum ether, m.p. 44-45°C.

## **Preparation of Polyurethanes**

Three methods were used for preparation of the polyurethanes: (A) an inverse interfacial polycondensation technique,<sup>16</sup> (B) direct interfacial reaction,<sup>17</sup> and (C) an anhydrous catalytic solution process.<sup>18</sup> Representative examples of each are given.

Preparation of the Polyurethane from 4,4'-Methylenebis(*N*-methylaniline) and Bisphenol-A (Method A). A solution of 11.32 g. (0.05 mole) of 4,4'-methylenebis(*N*-methylaniline) and 8.8 g. (0.09 mole) of 37.3%hydrochloric acid in 450 ml. of water was cooled to below 3°C. To this were added, in quick succession, solutions of 2.10 g. of Tergitol Anionic 7 (a sodium alkyl sulfate detergent) in 15 ml. of water and of 17.66 g. (0.05 mole) of bisphenol-A dichloroformate in 220 ml. of methylene chloride. To this rapidly stirred mixture was added dropwise a solution of 8.18 g. (0.2 mole) of 97.8% sodium hydroxide in 65 ml. of water; addition required 17 min., the temperature being maintained at -1.5 to  $+1^{\circ}$ C. The mixture was held at  $0-1^{\circ}$ C. for an additional 24 min. and then allowed to warm up to room temperature.

The strongly alkaline aqueous phase was decanted, and the viscous organic layer was washed successively with water, an aqueous solution containing about 4.4% hydrochloric acid and 12% acetic acid, and five portions of water. The polymer was then precipitated by addition of the methylene chloride solution to 1 liter of ethanol in a Waring Blendor. The yield was 83%, and the reduced viscosity in methylene chloride was 0.68. (All reduced viscosities (RV) were measured at 25°C. at a concentration of 0.2 g./100 ml. solvent.) The polymer contained 5.10% nitrogen (theoretical 5.53%), and its infrared spectrum included a strong band at 5.82  $\mu$ , characteristic of urethanes.

Preparation of the Poly(carbonate-urethane) from Bisphenol-A and 15 Mole-% of 4,4'-Methylenebis(N-methylaniline) (Method B).\* In a Waring Blendor was placed a mixture composed of 1.697 g. (0.0075 mole) of 4,4'-methylenebis(N-methylaniline), 3.99 g. (0.0175 mole) of bisphenol-A, 2.4 g. (0.06 mole) of sodium hydroxide, 0.5 g. of Duponol ME, 0.20 ml. of triethylamine, and 80 ml. of distilled water. A solution of 8.83 g. (0.025 mole) of bisphenol-A dichloroformate in 100 ml. of benzene was added to this mixture. Stirring was started and continued for 50 min. After 35 min., an additional 0.01 ml. of triethylamine was added to the reaction medium.

The crude reaction mixture was coagulated in 1500 ml. of isopropanol. The polymer was filtered and washed with 1 liter of distilled water on the filter. It was redissolved in 300 ml. of methylene chloride, washed, and recovered essentially as described in the preceding example.

The yield of the polymer was 90%; reduced viscosity in methylene chloride was 0.55. The polymer contained 1.76% nitrogen (theoretical 1.66%); its infrared spectrum exhibited two carbonyl absorption bands at  $\sim 5.65 \mu$  (the carbonate) and at  $\sim 5.85 \mu$  (the urethane).

**Preparation of the Polyurethane from** N,N'-**Diphenylhexamethylenediamine and Bisphenol-A** (Method C). A mixture of 3.53 g. (0.01 mole) of bisphenol-A dichloroformate, 2.68 g. (0.01 mole) of N,N'-diphenylhexamethylenediamine, 0.06 g. (25 mole-%) of 20 mesh magnesium powder, and 60 ml. of dry s-tetrachloroethane was heated under reflux in a stream of dry nitrogen for 7 hr. Hydrogen chloride evolution was rapid during the first 2 hr., then slowed and became practically insignificant after 5 hr. The reaction solution was very viscous at the end of the experiment. It was diluted with 50 ml. of fresh solvent and filtered through a Celite bed prepared in stetrachloroethane. The filtrate was coagulated in 1 liter of isopropanol.

<sup>\*</sup> The mole percentage of the diamine was defined as the ratio (times 100) of the number of moles of the diamine to the total number of moles of the bisphenol, bisphenol dichloroformate, and diamine.

A white polymer, reduced viscosity in s-tetrachloroethane 1.64, was obtained in a yield of 80%. The infrared spectrum of this polymer included a band at 5.8  $\mu$ , characteristic of urethanes.

## **Testing Procedures**

All polymer samples were prepared by casting thin film (0.001-0.003 in.) from chloroform. Complete removal of solvent required drying the film in a vacuum oven at 60-80°C. for 24 hr.

**Room Temperature Tensile Properties.** Individual test specimens  $1/_8$  in. wide were shear cut from the cast film. The stress-strain behavior was determined on an Instron tensile tester on a 2-in. gauge length sample at a strain rate of 10%/min. The room temperature tensile properties were calculated by eqs. (1)-(3).

Tensile modulus (psi) = 
$$\frac{\text{Load at 1\% strain (lb.)}}{\text{Cross sectional area (sq. in.)}} \times 100$$
 (1)

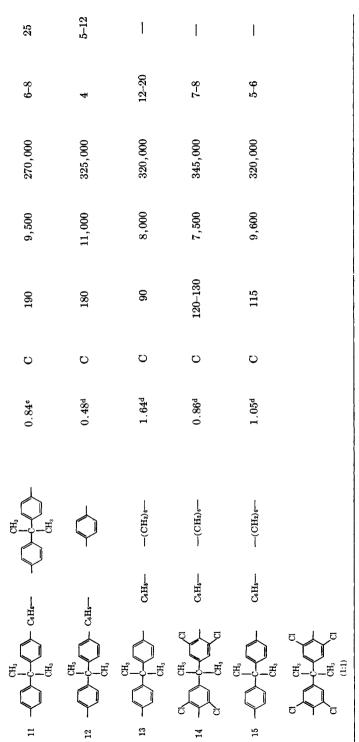
Tensile strength (psi) 
$$= \frac{\text{Breaking load (lbs.)}}{\text{Cross-sectional area (sq. in.)}}$$
 (2)

Elongation at break (%) = 
$$\frac{\text{Breaking length} - \text{Original length}}{\text{Original length}} \times 100$$
 (3)

**Pendulum Impact.** Similar thin film specimens were used to measure impact properties. The impact characteristics of the films were determined on a modified Baldwin impact tester. A 1/4-in. diameter rod was used as the impacting head of the pendulum. A 1 by 1/8-in. film sample was mounted transverse to the path of the pendulum and located at the bottom of the swing. The 1/4-in. rod struck the 1/8-in. face of the sample half way between the ends. The energy to break the sample was determined by the difference between the initial height and the recovery height of the pendulum after it had broken the sample.

Pendulum impact 
$$\left(\frac{\text{ft.-lb.}}{\text{in.}^3}\right) = \frac{\text{Pendulum energy loss}}{\text{Volume of sample}}$$
 (4)

Glass Transition Temperature. The glass transition temperature was determined on the thin film samples by measuring the recovery characteristics as a function of temperature.<sup>19</sup> A film specimen was strained 1% at the rate of 10%/min. and then allowed to return at the same rate. The recovery or resilience was calculated from the ratio of the recovered length to original length. This test was repeated at elevated temperatures. A programmed rate of heating of 1.5–2°C./min. was used, measurements being repeated at intervals of 3–5°C. The glass transition temperature  $T_{g}$ , is defined as the minimum in a plot of resilience versus temperature. For amorphous polymers, the minimum resilience is 10–30%.


**Permeability.** The gas transmission rates were measured in a Dow gas permeability cell according to ASTM D1434-63.

|                                                             |                         | Pendu-<br>lum<br>ftlb./in. <sup>3</sup> | 130                                                                                         | ł                                 | I                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | I                 | (continued) |
|-------------------------------------------------------------|-------------------------|-----------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------|
|                                                             |                         | Elongation<br>at break,<br>f            | 100                                                                                         | 4                                 | Сı                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4                 |             |
|                                                             | Properties <sup>a</sup> | Tensile<br>modulus,<br>psi              | 330,000                                                                                     | 331,000                           | 228,000                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 353,000           |             |
| 0<br>L and Their Properties                                 | P                       | Tensile<br>strength,<br>psi             | 10,600                                                                                      | 10,000                            | 7,410                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10,250            |             |
| 0<br>                                                       |                         | T" °C.                                  | 155                                                                                         | 210                               | 170                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 170               |             |
| TABLE I<br>R <sub>1</sub> R <sub>1</sub> - R <sub>1</sub> - |                         | Method<br>of<br>preparation             | A                                                                                           | G                                 | C                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | υ                 |             |
| ်=ပု                                                        | i<br>L                  | RV                                      | 0.68 <sup>b</sup>                                                                           | 0.53                              | 2.68                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.60 <sup>b</sup> |             |
| Polyurethanes±0-Ar0                                         |                         | $ m R_2$                                |                                                                                             | -CH <sub>2</sub> -CH <sub>2</sub> | -CH <sub>2</sub> -CH <sub>2</sub>       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |             |
|                                                             |                         | Rı                                      | CH <sub>3</sub> —                                                                           | CH,—                              | CH <sub>3</sub> —                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CH,               |             |
|                                                             |                         | Polymer no. Ar                          | I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I |                                   | s<br>CH <sub>2</sub><br>CH <sub>3</sub> | $\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ $ | (1:1)             |             |

## CONDENSATION POLYMERS

| Pendu-<br>1 lum<br>impact,<br>ftlb./in. <sup>3</sup> | ١                                                                                                                                                                                                                                                                                          | 12-17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10-17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ł                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 30-50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 30-40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Elongatior<br>at break, $\%$                         | ŋ                                                                                                                                                                                                                                                                                          | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 57<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ũ                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10-100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Tensile<br>modulus,<br>psi                           | 340,000                                                                                                                                                                                                                                                                                    | 285,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 300,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 330,000                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 330,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 340,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Tensile<br>strength,<br>psi                          | 11,100                                                                                                                                                                                                                                                                                     | 6,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8,200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11,500                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10,300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10,400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| T, °C.                                               | 195                                                                                                                                                                                                                                                                                        | 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 160                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Method<br>of<br>preparation                          | C                                                                                                                                                                                                                                                                                          | ¥                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| RV 1                                                 | 0.85                                                                                                                                                                                                                                                                                       | 0.72°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.54°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.52°                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.96°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| r<br>R                                               | CH <sub>2</sub>                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CH-CH-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Ar                                                   | (1:3) CH <sub>4</sub>                                                                                                                                                                                                                                                                      | CHI CHI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\overset{c}{\underset{c}{         $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\Diamond$                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $10  \underbrace{\bigcirc \begin{array}{c} CH_3 \\ CH_5 \\ CH_5 \end{array}}_{CH_5}  c_{2H_5} -$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                      | $\operatorname{Method} = \operatorname{Tensile} \operatorname{Tensile} \operatorname{Tensile} \operatorname{Elongation} of \operatorname{strength}, \operatorname{modulus}, \operatorname{at break}, \operatorname{ft}, \operatorname{R}_{q} \circ \operatorname{C.}$ psi psi $\%_{0}$ ft. | Ar $R_1$ $R_1$ $R_2$ $RV$ preparation $T_{s}$ , °C. Psi Tensile Flongation<br>of strength, modulus, at break, $\widetilde{\gamma_0}$ ft.<br>(1:3) $CH_{s} - OH_s - OH_s$ | Ar $R_1$ $R_2$ Method<br>of<br>KTensile<br>strength,<br>modulus,<br>$R_1$ Tensile<br>at break,<br>$R_2$ Elongation<br>at break,<br>$R_2$ (1:3) $CH \bigcirc CH_s$ $P_s$ $RV$ preparation $T_{\theta_s}$ °C. $P_{sin}$ $P_{sin}$ $P_{sin}$ $P_{sin}$ (1:3) $CH \bigcirc CH_s$ $O$ $B_2$ $O$ $B_3$ $O$ $B_1$ $P_{sin}$ $P_{sin}$ $P_{sin}$ $O_{cH_s}$ $O$ $CH_s$ $O$ $B_2$ $O$ $B_1$ $B_1$ $B_1$ $B_2$ $P_1$ $O_{cH_s}$ $O$ $CH_s$ $O$ $O$ $B_2$ $O$ $O$ $B_2$ $O$ $B_2$ $B_1$ $O$ $B_2$ $B_1$ $D_1$ $D_1$ $D_2$ $D_1$ $D_1$ $D_2$ $D_1$ </td <td>ArR1R1R2Method<br/>of<br/>Strength,<br/>RVTensile<br/>reparationTensile<br/>regileFlongation<br/>at break,<br/><math>7_{0}^{\circ}</math>, ft.(1:3)CH-<math>\frown -CH_{*} - \bigcirc + \bigcirc</math></td> <td>ArR1R1R3Method<br/>of<br/><math>1</math>Tensile<br/>r, °C.Tensile<br/>rength,<br/>modulus,<br/><math>340,000</math>Elongation<br/><math>5</math>(1.3)CH-<math>\bigcirc CH_{*} \bigcirc C</math>,<br/><math>CH-</math>11,100340,0005<math>(1.3)</math>CH-<math>\bigcirc CH_{*} \frown C</math>0.85bC19511,100340,0005<math>(1.3)</math>CH-<math>\bigcirc CH_{*} \frown C</math>0.72°A1309,000285,0006<math>(1.4)</math><math>\bigcirc CH_{*} \frown C</math>0.72°A1309,000285,0006<math>(1.4)</math><math>\bigcirc CH_{*} \frown C</math>0.54°A2008,200300,0005-8<math>(1.4)</math><math>\bigcirc CH_{*} \frown C</math>0.54°A16011,500300,0005-8<math>(1.5)</math><math>\sub CH_{*} \frown C</math><math>\circlearrowright CH_{*} \frown C</math>0.52°A16011,500300,0005-8</td> <td>ArR1R1R2Method<br/>of<br/>of<br/>of<br/>of<br/>f.1.TensileTensileTensileElongetion<br/>action(1.3)CH-<math>\bigcirc</math>-CH+ <math>\bigcirc</math>B.RVpreparationTs, °C.stringth,<br/>print,<br/>pointmodulus,<br/>actions,<br/>actions,<br/>actions,<br/>actions,<br/>actions,TensileElongetion<br/>actions,<br/>actions,<br/>actions,<br/>actions,<br/>actions,<br/>actions,<br/>actions,TensileElongetion<br/>actions,<br/>actions,<br/>actions,<br/>actions,<br/>actions,<br/>actions,TensileElongetion<br/>actions,<br/>actions,<br/>actions,<br/>actions,<br/>actions,<br/>actions,TensileElongetion<br/>actions,<br/>actions,<br/>actions,<br/>actions,<br/>actions,<br/>actions,TensileElongetion<br/>actions,<br/>actions,<br/>actions,<br/>actions,<br/>actions,<br/>actions,TensileElongetion<br/>actions,<br/>actions,<br/>actions,<br/>actions,<br/>actions,TensileElongetion<br/>actions,<br/>actions,<br/>actions,<br/>actions,<br/>actions,<br/>actions,TensileElongetion<br/>actions,<br/>actions,<br/>actions,<br/>actions,<br/>actions,<br/>actions,<br/>actions,TensileElongetion<br/>actions,<br/>actions,<br/>actions,<br/>actions,<br/>actions,<br/>actions,<br/>actions,TensileElongetion<br/>actions,<br/>actions,<br/>actions,<br/>actions,<br/>actions,<br/>actions,TensileElongetion<br/>actions,<br/>actions,<br/>actions,<br/>actions,<br/>actions,<br/>actions,TensileElongetion<br/>actions,<br/>actions,<br/>actions,<br/>actions,<br/>actions,TensileTensile,<br/>actions,<br/>actions,<br/>actions,<br/>actions,Tensile,<br/>actions,<br/>actions,<br/>actions,<br/>actions,<br/>actions,Tensile,<br/>actions,<br/>actions,<br/>actions,<br/>actions,Tensile,<br/>act</td> <td>ArR1R1Rethod<br/>of<br/>of<br/>ft-Tensile<br/>strength,<br/>psiTensile<br/>attendenting,<br/>strength,<br/>psiTensile<br/>attendenting,<br/>strength,<br/>psiTensile<br/>attendenting,<br/>strength,<br/>psiElongentin<br/>attendenting,<br/>strength,<br/>psiElongentin<br/>attendenting,<br/>strength,<br/>psiTensile<br/>attendenting,<br/>strength,<br/>psiElongentin<br/>attendenting,<br/>strength,<br/>psiElongentin<br/>attendenting,<br/>strength,<br/>psiElongentin<br/>attendenting,<br/>strength,<br/>psiElongentin<br/>attendenting,<br/>strength,<br/>psiElongentin<br/>attendenting,<br/>strength,<br/>psiElongentin<br/>attendenting,<br/>strength,<br/>psiElongentin<br/>attendenting,<br/>strength,<br/>psiElongentin<br/>attendenting,<br/>strength,<br/>psiElongentin<br/>attendenting,<br/>strength,<br/>psiTensile<br/>attendenting,<br/>strength,<br/>psiElongentin<br/>attendenting,<br/>strength,<br/>psiTensile<br/>attendenting,<br/>strength,<br/>psiElongentin<br/>attendenting,<br/>strength,<br/>psiResidenting,<br/>attendenting,<br/>strength,<br/>psiElongenting,<br/>strength,<br/>psiElongenting,<br/>strength,<br/>psiElongenting,<br/>strength,<br/>psiElongenting,<br/>strength,<br/>psiElongenting,<br/>strength,<br/>psiElongenting,<br/>strength,<br/>psiElongenting,<br/>strength,<br/>psiElongenting,<br/>strength,<br/>strength,<br/>psiResidenting,<br/>strength,<br/>psiElongenting,<br/>strength,<br/>psiElongenting,<br/>strength,<br/>strength,<br/>strength,<br/>strength,Tensile<br/>strength,<br/>strength,<br/>strength,<br/>strength,Elongenting,<br/>strength,<br/>strength,<br/>strength,<br/>strength,Elongenting,<br/>strength,<br/>strength,Elongenting,<br/>strength,<br/>strengt</td> | ArR1R1R2Method<br>of<br>Strength,<br>RVTensile<br>reparationTensile<br>regileFlongation<br>at break,<br>$7_{0}^{\circ}$ , ft.(1:3)CH- $\frown -CH_{*} - \bigcirc + \bigcirc$ | ArR1R1R3Method<br>of<br>$1$ Tensile<br>r, °C.Tensile<br>rength,<br>modulus,<br>$340,000$ Elongation<br>$5$ (1.3)CH- $\bigcirc CH_{*} \bigcirc C$ ,<br>$CH-$ 11,100340,0005 $(1.3)$ CH- $\bigcirc CH_{*} \frown C$ 0.85bC19511,100340,0005 $(1.3)$ CH- $\bigcirc CH_{*} \frown C$ 0.72°A1309,000285,0006 $(1.4)$ $\bigcirc CH_{*} \frown C$ 0.72°A1309,000285,0006 $(1.4)$ $\bigcirc CH_{*} \frown C$ 0.54°A2008,200300,0005-8 $(1.4)$ $\bigcirc CH_{*} \frown C$ 0.54°A16011,500300,0005-8 $(1.5)$ $\sub CH_{*} \frown C$ $\circlearrowright CH_{*} \frown C$ 0.52°A16011,500300,0005-8 | ArR1R1R2Method<br>of<br>of<br>of<br>of<br>f.1.TensileTensileTensileElongetion<br>action(1.3)CH- $\bigcirc$ -CH+ $\bigcirc$ B.RVpreparationTs, °C.stringth,<br>print,<br>pointmodulus,<br>actions,<br>actions,<br>actions,<br>actions,<br>actions,TensileElongetion<br>actions,<br>actions,<br>actions,<br>actions,<br>actions,<br>actions,<br>actions,TensileElongetion<br>actions,<br>actions,<br>actions,<br>actions,<br>actions,<br>actions,TensileElongetion<br>actions,<br>actions,<br>actions,<br>actions,<br>actions,<br>actions,TensileElongetion<br>actions,<br>actions,<br>actions,<br>actions,<br>actions,<br>actions,TensileElongetion<br>actions,<br>actions,<br>actions,<br>actions,<br>actions,<br>actions,TensileElongetion<br>actions,<br>actions,<br>actions,<br>actions,<br>actions,TensileElongetion<br>actions,<br>actions,<br>actions,<br>actions,<br>actions,<br>actions,TensileElongetion<br>actions,<br>actions,<br>actions,<br>actions,<br>actions,<br>actions,<br>actions,TensileElongetion<br>actions,<br>actions,<br>actions,<br>actions,<br>actions,<br>actions,<br>actions,TensileElongetion<br>actions,<br>actions,<br>actions,<br>actions,<br>actions,<br>actions,TensileElongetion<br>actions,<br>actions,<br>actions,<br>actions,<br>actions,<br>actions,TensileElongetion<br>actions,<br>actions,<br>actions,<br>actions,<br>actions,TensileTensile,<br>actions,<br>actions,<br>actions,<br>actions,Tensile,<br>actions,<br>actions,<br>actions,<br>actions,<br>actions,Tensile,<br>actions,<br>actions,<br>actions,<br>actions,Tensile,<br>act | ArR1R1Rethod<br>of<br>of<br>ft-Tensile<br>strength,<br>psiTensile<br>attendenting,<br>strength,<br>psiTensile<br>attendenting,<br>strength,<br>psiTensile<br>attendenting,<br>strength,<br>psiElongentin<br>attendenting,<br>strength,<br>psiElongentin<br>attendenting,<br>strength,<br>psiTensile<br>attendenting,<br>strength,<br>psiElongentin<br>attendenting,<br>strength,<br>psiElongentin<br>attendenting,<br>strength,<br>psiElongentin<br>attendenting,<br>strength,<br>psiElongentin<br>attendenting,<br>strength,<br>psiElongentin<br>attendenting,<br>strength,<br>psiElongentin<br>attendenting,<br>strength,<br>psiElongentin<br>attendenting,<br>strength,<br>psiElongentin<br>attendenting,<br>strength,<br>psiElongentin<br>attendenting,<br>strength,<br>psiTensile<br>attendenting,<br>strength,<br>psiElongentin<br>attendenting,<br>strength,<br>psiTensile<br>attendenting,<br>strength,<br>psiElongentin<br>attendenting,<br>strength,<br>psiResidenting,<br>attendenting,<br>strength,<br>psiElongenting,<br>strength,<br>psiElongenting,<br>strength,<br>psiElongenting,<br>strength,<br>psiElongenting,<br>strength,<br>psiElongenting,<br>strength,<br>psiElongenting,<br>strength,<br>psiElongenting,<br>strength,<br>psiElongenting,<br>strength,<br>strength,<br>psiResidenting,<br>strength,<br>psiElongenting,<br>strength,<br>psiElongenting,<br>strength,<br>strength,<br>strength,<br>strength,Tensile<br>strength,<br>strength,<br>strength,<br>strength,Elongenting,<br>strength,<br>strength,<br>strength,<br>strength,Elongenting,<br>strength,<br>strength,Elongenting,<br>strength,<br>strengt |

CONDENSATION POLYMERS



<sup>a</sup> Determined on films cast from chloroform.

<sup>b</sup> In methylene chloride.

° In chloroform.

<sup>d</sup> In s-tetrachloroethane.

## RESULTS

This work was directed primarily toward the synthesis and evaluation of polyurethanes. Results are summarized in Table I. All of the polymers were amorphous and noncrystallizable. Resistance to heat aging in the presence of air was measured on several of the polyurethanes. The pertinent data are given in Table II.

|                             | Exposu       | re to Air      | Pendulum<br>ftlb., |                | RVÞ             |                |  |
|-----------------------------|--------------|----------------|--------------------|----------------|-----------------|----------------|--|
| Polymer<br>no. <sup>a</sup> | Time,<br>hr. | Temp.,<br>°C.  | Before<br>aging    | After<br>aging | Before<br>aging | After<br>aging |  |
| 1                           | 335          | 175            | 130                | 5              | 1.22            | Insoluble      |  |
| 10                          | 335          | 175            | 40                 | 13             | 1.06            | 1.00°          |  |
| 11                          | {164<br>{164 | { 180<br>{ 200 | 25                 | 23             | 0.84            | 0.91           |  |

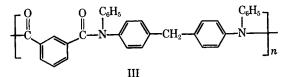
TABLE II

<sup>a</sup> The polymer numbers correspond to those of Table I.

<sup>b</sup> These reduced viscosities were measured in chloroform.

° This reduced viscosity was measured after 209 hr.

An investigation was also made of the influence of urethane linkages on the properties of bisphenol-A polycarbonate. A series of poly(carbonateurethanes) was prepared according to eq. (5) where x = y + z. (See p. 3345.)


The molar percentage P of the diamine is defined as

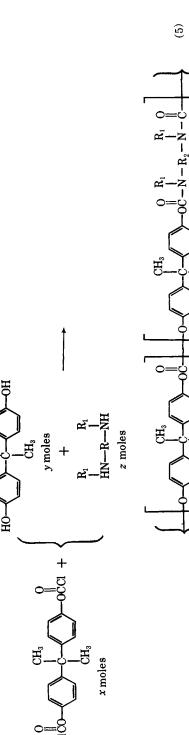
$$P = [z/(x + y + z)] \times 100$$
(6)

The percentage of urethane linkages in the copolymer is equal to 2P. The poly(carbonate-urethanes) that were prepared are recorded in Table III. Included in this table are also typical properties of Lexan and of the corresponding urethane homopolymers.

As may be seen from Table III, good incorporation of the diamine into the polymers was obtained. All of the polymers were amorphous, apparently noncrystallizable materials. Gas transmission data were obtained for one polymer (No. 18) and are shown in Table IV along with the corresponding values obtained on Lexan.

The condensation of isophthaloyl chloride with 4,4"-methylenebis-(diphenylamine) (method C) yielded the polyamide III.




The properties found on a film of this polymer cast from chloroform are listed in Table V.

Ľ

ĊН₃

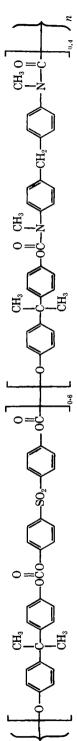
ے لگ

ĊH



СH3

| MATZNER, R. BA            | RC                      | LAY, J                                        | R., AI  | ND C.   | N. M    | ERRI    | AM      |         |
|---------------------------|-------------------------|-----------------------------------------------|---------|---------|---------|---------|---------|---------|
| perties                   |                         | Pendulum<br>impact,<br>ftlb./in. <sup>3</sup> | 100-500 | ]       | 1       | 1       | 1       | 130     |
| and Their Properties<br>n | rties <sup>b</sup>      | Elongation at break, $\%$                     | 50-100  | 60      | 9       | 50      | 7       | 100     |
|                           | Properties <sup>b</sup> | Tensile<br>modulus,<br>psi                    | 300,000 | 276,000 | 326,000 | 340,000 | 322,000 | 330,000 |
| L<br>22                   |                         | 0.7                                           | , g     |         |         |         |         |         |


|           | and Their Pro<br>n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | rties <sup>b</sup>      | Elongation at break, $\%$         | 50-100               | 60      | 9                                 | 50      | 2       | 100               |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------------------------|----------------------|---------|-----------------------------------|---------|---------|-------------------|
|           | $\mathbb{R}_{1}$ $\mathbb{O}$ $\mathbb{R}_{2}$ $\mathbb{O}$ $\mathbb{P}_{2}$ $\mathbb{O}$ $$ | Properties <sup>b</sup> | Tensile<br>modulus,<br>psi        | 300,000              | 276,000 | 326,000                           | 340,000 | 322,000 | 330,000           |
|           | 0 R <sub>1</sub><br>0<br>0<br>- NR <sub>2</sub> -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         | Tensile<br>strength,<br>psi       | $^{8,000-}_{10,000}$ | 8,270   | 10, 420                           | 11,400  | 10,950  | 10,600            |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         | °C,                               | 150                  | ļ       | 155                               | 145     |         | 155               |
|           | GH, CH, CH,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         | $N, \%^{a}$                       | 1                    | 0.73    | 1.76                              | 3.50    | 4.50    | 5.10              |
| TABLE III | $\bigvee$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | alc                               | 1                    | 0.53    | 1.66                              | 3.31    | 4.42    | 5.53              |
| TAI       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Mathad                  | Method<br>of<br>prepara<br>tion C |                      | B       | B                                 | В       | B       | Y                 |
|           | $\overset{\circ}{\frown}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | RV                                | 1                    | 1.8°    | 0.55°                             | 0.93    | 0.95°   | 0.68              |
|           | ËË                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                         | d.%                               | 0                    | ŝ       | 15                                | 30      | 40      | 50                |
|           | Poly(carbonate-urethanes)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | 쎫                                 |                      |         | -CH <sub>2</sub> -CH <sub>2</sub> |         |         |                   |
|           | ly(carbona                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         | R                                 | 1                    | CH3     | CH3—                              | CH3     | CH3-    | CH <sub>s</sub> — |
|           | Pol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         | Poly-<br>mer<br>no.               | 16                   | 17      | 18                                | 18      | 20      | 21                |

| 14 56-82          | 41-74 42-66 | 75-104 60-84 | 6 12-17    | 10-14 35-60                           | 17-37 33                      | 6 30-40    | 17-32 35-60       |                                                                                                                                                                  |
|-------------------|-------------|--------------|------------|---------------------------------------|-------------------------------|------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   | 255,000 4   | 250,000 7    | 285,000    | 290,000                               | 300,000 1                     | 340,000    | 300,000           |                                                                                                                                                                  |
| 0,100             | 8,100       | 9,100        | 9,000      | 7,800                                 | 7,600                         | 10,400     | 9,000             |                                                                                                                                                                  |
| 145               | 140         | 135          | 130        | 160                                   | 160                           | 160        | 170               |                                                                                                                                                                  |
| 1.22              | 2.32        | 3.44         |            | I                                     | 2.44                          | 4.52       | 1                 | ġ                                                                                                                                                                |
| 1.09              | 2.16        | 3.21         | 1          | I                                     | 2.46                          | 4.44       | ł                 | ille, Ten                                                                                                                                                        |
| в                 | В           | в            | ¥          | C                                     | Ö                             | C          | В                 | Knoxv                                                                                                                                                            |
| 1.24 <sup>d</sup> | $1.20^d$    | $1.20^d$     | $0.72^{d}$ | $0.52^{d}$                            | $0.80^{4}$                    | $0.96^{d}$ | 0.90 <sup>d</sup> | oratories,                                                                                                                                                       |
| 10                | 20          | 30           | 50         | 10                                    | 25                            | 50         | 20                | aith Lab                                                                                                                                                         |
|                   | -CHi-Ch     | -Ch-CH,-C    | -CH2-CH2   | -CH <sub>2</sub> -CH <sub>2</sub> -CH | -CH-CH-                       | -ch-ch     |                   | <ul> <li>Nitrogen analyses were performed by Galbraith Laboratories, Knoxville, Tenn.</li> <li><sup>b</sup> Determined on films cast from chloroform.</li> </ul> |
| $C_{i}H_{i}-$     | $C_2H_5$    | $C_2H_5$     | $C_2H_5$   | C <sub>6</sub> H <sub>6</sub> —       | C <sub>6</sub> H <sub>6</sub> | C,H,       | 29° CH3           | <sup>a</sup> Nitrogen analyses wer<br><sup>b</sup> Determined on films of<br><sup>c</sup> In motherhand oblighted                                                |
| 22                | 23          | 24           | 25         | 26                                    | 27                            | 28         | 29°               | NQ                                                                                                                                                               |

<sup>e</sup> In methylene chloride.

<sup>d</sup> In chloroform.

• In this experiment, 1 mole of bisphenol-A dichloroformate was treated with 0.6 mole of bis(p-hydroxyphenyl) sulfone and 0.4 mole of 4,4'-methylenebis(N-methylaniline); the formula of the copolymer, obtained in an 85% yield, was presumably

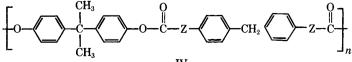


## CONDENSATION POLYMERS

|                   | Permeability at 25°C., cm.3(STP) mil/100 in.2/24 hra |                   |                |       |  |  |  |  |
|-------------------|------------------------------------------------------|-------------------|----------------|-------|--|--|--|--|
| Polymer           | H <sub>2</sub>                                       | $\rm CO_2$        | O <sub>2</sub> | $N_2$ |  |  |  |  |
| No. 18, Table III | 1220                                                 | 610               |                | 30    |  |  |  |  |
| Lexan             | 1720                                                 | 1000              | 185            | 36    |  |  |  |  |
|                   | TABLE V. 1                                           | Properties of III |                |       |  |  |  |  |
| RV (in chlo       | roform)                                              |                   | 0.53           |       |  |  |  |  |
| $T_{g}$ , °C.     |                                                      |                   | 150            |       |  |  |  |  |
| Tensile stre      | ngth, psi                                            |                   | 5,600          |       |  |  |  |  |
| Tensile mod       | ulus, psi                                            |                   | 295,000        |       |  |  |  |  |
| Elongation a      | at break, %                                          |                   | 4-8            |       |  |  |  |  |

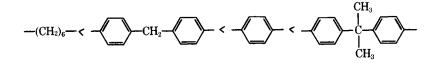
TABLE IV. Gas Transmission Data of a Poly(carbonate-urethane) and of Lexan

## DISCUSSION


#### **Mechanical Properties**

It should be possible to explain the mechanical properties of a given polymer in terms of its transition temperatures. Since the new polymers prepared in this study all proved to be amorphous and apparently noncrystallizable, no consideration of crystalline melting points is involved. In all cases, the major glass transitions are well above room temperature: as would be expected from this, tensile strengths and tensile moduli are quite high. Much greater variability was observed in those properties reflecting the toughness of these polymers, i.e., their elongations and impact strengths. Toughness in stiff, amorphous thermoplastics is attributed<sup>20</sup> to secondary transitions below room temperature. Brittleness and low ductility, on the other hand, may be either inherent to a given polymer or the result of flaws Unfortunately, limitations in the amounts of available in the test samples. material prevented measurements of low temperature transitions in the present study.

## Structure–Property Correlations


Relationships between structure and glass transition temperature for a number of similar polymers can be found in Table I. Polymers 1-5 illustrate the effect of replacing residues of bisphenol-A by those of tetrachlorobisphenol-A. The latter, with its relatively bulky ortho substituents, decreases the rotational freedom of the chains and thereby raises the glass transition temperature. Values of  $T_{\rho}$  for the copolymers lie between those of the homopolymers. The same effect is illustrated by polymers 6-8, 13-15, and 22-25 (Table III).

The effect of chain substituents on the glass transition temperature is illustrated by the sequence of polymers (IV). The value of  $T_g$  for the parent polycarbonate (Z = --O--) is 145-150°C.<sup>21</sup>



Replacement of oxygen by the group  $-NCH_3$  decreases chain flexibility and raises  $T_g$  to 155° (polymer 1), and a slight further increase results from the replacement of the N-methyl group by N-phenyl (polymer 10). Rather surprisingly, however, the glass transition temperature of polymer 6 (Z =  $-NCH_2CH_3$ ) was found to be only 130°C. This ethyl-methyl relationship holds also for polymers 2, 7 and 4, 8, although the difference in transition temperatures is smaller. Similar observations were reported by Korshak<sup>22</sup> and by Fedotova<sup>6</sup> on polyamides analogous to polymers 1 and 6. It is possible that in these cases the increase in chain stiffness resulting from the greater bulk of the N-ethyl group is more than compensated for by interference with interchain forces.

Effects of the group  $R_2$  on the glass transition temperature may be seen in the series of polymers 10–13, in which the order is



The relative position of polymers 10 and 12 is rather surprising, since the addition of benzyl groups,  $-C_6H_4CH_2$ , to the repeat unit would ordinarily be expected to increase  $T_{\rho}$ , as was observed for the polyhydroxyethers of hydroquinone and bis(*p*-hydroxyphenyl)methane.<sup>23</sup>

#### Thermal Stability

From the data of Table II, it is apparent that polymer 11 is very stable in air at 180–200°C., and polymer 10 is somewhat less stable. Polymer 1 became partially insoluble, probably because of crosslinking, and then gradually embrittled. The difference between polymers 10 and 11 is probably attributable to the benzylic hydrogens present in the former, since these are doubtless sites at which free radical reactions can occur.

The instability of polymer 1 may result from oxidative attack at the Nmethyl group. This is uncertain since the sample used had been prepared interfacially (method A) and was probably contaminated with inorganic impurities, known<sup>24</sup> to be sources of instability in polycarbonates.

## CONCLUSIONS

A series of polyurethanes and poly(carbonate-urethanes) was prepared from diphenols and N,N'-dialkyl and N,N'-diarylarylenediamines. Examinations of their properties showed that they are rigid, thermoplastic, noncrystallizable resins, possessing high softening temperatures. In several cases, their properties were at least equivalent to those of the known bisphenol polycarbonates. As expected, the poly(carbonate-urethanes) exhibit properties intermediate between those of the respective homopolymers.

#### References

1. Schnell, H., Angew. Chem., 68, 633 (1956).

2. Schnell, H., Ind. Eng. Chem., 51, 157 (1959).

3. Conix, A., Ind. Eng. Chem., 51, 147 (1959).

4. Hill, H. W., Jr., S. L. Kwolek, and P. W. Morgan (to E. I. du Pont de Nemours and Co., Inc.), U. S. Pat. 3,006,899 (1961).

5. Hill, H. W., Jr., S. L. Kwolek, and W. Sweeny (to E. I. du Pont de Nemours and Co., Inc.), U. S. Pat. 3,094,511 (1963).

6. Fedotova, O. Ya., M. L. Kerber, and I. P. Losev, Vysokomol. Soedin., 2, 1020 (1960).

7. Dyer, E., and R. J. Hammond, J. Polymer Sci., A2, 1 (1964).

8. Borg-Warner Corporation, French Pats. 1,346,574 (1963) and 1,361,620 (1964).

9. Fedotova, O. Ya., M. A. Askarov, and I. P. Losev, Zh. Obshchei Khim., 27, 775 (1957).

10. Billman, J. H., and L. R. Caswell, J. Org. Chem., 16, 1041 (1951).

11. Craig, D., J. Am. Chem. Soc., 55, 3723 (1933).

12. Craig, D., J. Am. Chem. Soc., 60, 1458 (1938).

13. Barclay, R., Jr., Can. J. Chem., 43, 2125 (1965).

14. Schnell, H., and L. Bottenbruch, Makromol. Chem., 57, 1 (1962).

15. Donohue, M. T., formerly of these laboratories, private communication.

16. Jones, W. D., and S. B. McFarlane (to Celanese Corp. of America), U. S. Pat. 2,660,574 (1953).

17. Wittbecker, E. L., and M. Katz, J. Polymer Sci., 40, 367 (1959).

18. Matzner, M., and R. Barclay, Jr., J. Appl. Polymer Sci., 9, 3321 (1965).

19. Brown, A., Textile Res. J., 25, 891 (1955).

20. Nielsen, L. E., *Mechanical Properties of Polymers*, Reinhold, New York, 1962, pp. 177-180.

21. Cotter, R. J., these laboratories, private communication.

22. Korshak, V. V., T. M. Frunze, and E. A. Krasnyanskaya, *Izv. Akad. Nauk*, SSSR, Otdel. Khim. Nauk, 1957, 626.

23. Reinking, N. H., A. E. Barnabeo, and W. F. Hale, J. Appl. Polymer Sci., 7, 2135 (1963).

24. Thompson, R. J., and K. B. Goldblum, Mod. Plastics, 35, No. 8, 131 (1958).

#### Résumé

Une série des polyuréthannes et poly(carbonate-uréthannes) a été préparée à partir des diphénols et N,N'-dialkyl- et N,N'-diarylarylènediamines. Ces polymères sont des thermoplastiques rigides, noncristallisables, possédant des hauts points de remollissement. Dans plusieurs cas, leurs propriétés étaieht au moins équivalentes à celles des polycarbonates des bisphénols connus. En accord avec les prévisions, les propriétés des poly(carbonate-uréthannes) se situent entre celles des homopolymères respectifs. Une corrélation structure-propriétés est présentée.

#### Zusammenfassung

Eine Reihe von Polyurethanen und Poly(carbonat-urethanen) wurde aus Diphenolen und N,N'-Dialkyl- und N,N'-Diarylarylendiaminen hergestellt. Diese Polymeren sind harte, nicht kristallisierbare thermoplastische Massen mit hoherm Erweichungspunkt. In verschiedenen Fällen waren ihre Eigenschaften denen der bekannten Bisphenolpolycarbonate mindestens gleichwertig. Wie erwartet besitzen die Poly(carbonaturethane) Eigenschaften, die zwischen denen der entsprechenden Homopolymeren liegen. Die Beziehung zwischen Struktur und Eigenschaften wird diskutiert.

Received May 14, 1965